P(x)+U(x)=(4x^2-1)-(x^2+2)

Simple and best practice solution for P(x)+U(x)=(4x^2-1)-(x^2+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)+U(x)=(4x^2-1)-(x^2+2) equation:


Simplifying
P(x) + U(x) = (4x2 + -1) + -1(x2 + 2)

Multiply P * x
xP + U(x) = (4x2 + -1) + -1(x2 + 2)

Multiply U * x
xP + xU = (4x2 + -1) + -1(x2 + 2)

Reorder the terms:
xP + xU = (-1 + 4x2) + -1(x2 + 2)

Remove parenthesis around (-1 + 4x2)
xP + xU = -1 + 4x2 + -1(x2 + 2)

Reorder the terms:
xP + xU = -1 + 4x2 + -1(2 + x2)
xP + xU = -1 + 4x2 + (2 * -1 + x2 * -1)
xP + xU = -1 + 4x2 + (-2 + -1x2)

Reorder the terms:
xP + xU = -1 + -2 + 4x2 + -1x2

Combine like terms: -1 + -2 = -3
xP + xU = -3 + 4x2 + -1x2

Combine like terms: 4x2 + -1x2 = 3x2
xP + xU = -3 + 3x2

Solving
xP + xU = -3 + 3x2

Solving for variable 'x'.

Reorder the terms:
3 + xP + xU + -3x2 = -3 + 3x2 + 3 + -3x2

Reorder the terms:
3 + xP + xU + -3x2 = -3 + 3 + 3x2 + -3x2

Combine like terms: -3 + 3 = 0
3 + xP + xU + -3x2 = 0 + 3x2 + -3x2
3 + xP + xU + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
3 + xP + xU + -3x2 = 0

The solution to this equation could not be determined.

See similar equations:

| 8p-8.3=31.7 | | (3x+2)*2=(2x+16) | | 2z+9-3= | | 3x+2=2x+16*.5 | | 12k+2=k+13 | | 10+11=t | | 4t^2+-8t+30=0 | | 9k+4.3=k+6 | | 0=-4(4t^2-8t+30) | | 22+6t=-14 | | 2x^4+11x-2x=2(x^4+7x)+25 | | 10x+6.4=19 | | (3x-4)*2=(5x+20) | | a=400+50 | | 25x^2-25x-36=0 | | 5+7i=0 | | P=5n-5u | | x-(1)=(1.5) | | x^2-6x+9-9y^2=0 | | 400=10a+5 | | x+(.08x)=6000 | | (y+1)(3y+3)=48 | | x(1)=(1.5) | | (7x-37)=(2x+93) | | 7p-11=-3+7 | | x-13-30=0 | | 12=9y-5y | | n+7=6n(-3) | | (y+1)(3y+3)= | | x+7=6n(-3) | | f(x)=x^3+5x^2-x-5 | | 5(10x-35)=3-2(x+3) |

Equations solver categories